

# Infrared Spectrum and Structure of 2-Thienyl-N-methylfulleropyrrolidine

V. I. Korepanov, A. A. Popov, V. M. Senyavin, M. A. Yurovskaya, and E. S. Chernyshova

Physical Chemistry Department, Organic Chemistry Department; e-mail: Korepanov@phys.chem.msu.ru

Received December 4, 2006

**Abstract**—The IR and  $^1\text{H}$  NMR spectra of 2-thienyl-*N*-methylfulleropyrrolidine are studied. The complete interpretation of the spectra is carried out on the basis of density functional theory calculations. Conformational composition is analyzed by means of both computational and experimental methods.

**DOI:** 10.3103/S0027131407020034

Photogalvanic cells and artificial photosynthesis systems based on donor–acceptor diads are a rapidly advancing field of research in new energy sources [1–3]. The operation principle of these devices is as follows: absorbing a light quantum, one component (donor) of the diad enters an excited electronic state; relaxation from this excited state involves electron transfer to the other component (acceptor) to produce a charge-separated state. In this context, fullerenes are interesting for their high electron affinity: they can act as efficient electron acceptors in photogalvanic cells [4]. Many diads of fullerenes  $\text{C}_{60}$  with phorphyrins, polythiophenes, chlorins, ferrocene, and other donors have been synthesized. The Prato reaction is one of the most frequently used methods for diad synthesis: this is the dipolar addition reaction of  $\text{C}_{60}$  with azomethinylides [1], which produces *N*-methylfulleropyrrolidines of the general formula  $\text{C}_{60}(\text{CH}_2)_2\text{N}(\text{CH}_3)\text{CHR}$  with donor substituent groups R at the heterocycle.

The nonplanar configuration of the pyrrolidine cycle, the internal rotation of group R, and the equatorial–axial isomerism of the methyl group make the coexistence of several conformers possible for such diads. Evidently, the properties of the diad depend above all on the relative location in space of the donor and acceptor fragments; this location can change from one conformer to another.

Despite a significant interest in *N*-methylfulleropyrrolidine-based diads, structural and conformations investigations (in particular, by means of spectroscopic methods) for such molecules have not been performed. This work is intended to study the structure and spectra of 2-thienyl-*N*-methylfulleropyrrolidine (TMFP, Fig. 1) using computational and experimental methods.

## EXPERIMENTAL AND COMPUTATION PROCEDURES

The synthesis of TMFP is described in [5]. The IR spectrum of TMFP was recorded as KBr pellets on a

Bruker IFS-113v FTIR spectrometer in the range 400–4000  $\text{cm}^{-1}$  with a 0.5  $\text{cm}^{-1}$  resolution. The  $^1\text{H}$  NMR spectrum was measured on a Varian VXR-400 spectrometer using a carbon sulfide/acetone- $d_6$  (9 : 1) solvent.

The molecular geometry was optimized and the IR spectra and proton shifts were calculated using Priroda software [6] in terms of the PBE generalized gradient approximation [7] and a three-exponent basis set supplemented with two sets of *d*-type polarization functions (TZ2P). Auxiliary computations in terms of the B3LYP hybrid functional and in terms of the Möller–Plesset second-order perturbation theory (MP2) were carried out using the GAMESS program package [8].

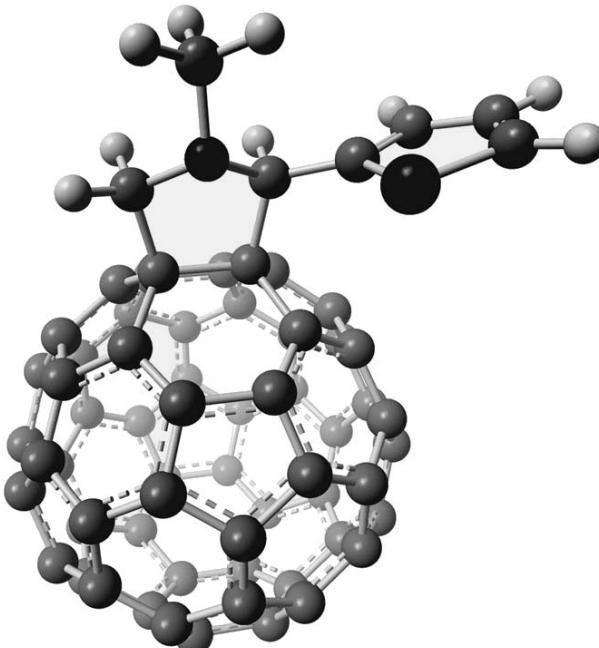



Fig. 1. Model of a TMFP molecule.

Direct and inverse vibrational problems were solved using the DISP program package [9]; the quantum-mechanical force fields obtained as a result of the computations were converted to the internal coordinate system, which was constituted by all bond length changes, bond angles, and nonplanar and torsion coordinates.

## RESULTS AND DISCUSSION

### Computation of the Geometry and Relative Energies of Conformers and Transformation Barriers

During the optimization of the TMFP molecular geometry, eight nonequivalent minima were located on the potential energy surface; this was due to the inversion of the heterocycle, the possibility of the internal rotation of the thiophene moiety, and the equatorial or axial position of the methyl group relative to the root-mean-squares plane of the pyrrolidine ring. Each of the eight conformers in addition has one enantiomer.

Figure 2 displays some structures that correspond to minima in the potential energy surface and that illustrate the routes of possible intramolecular structural transformations: from the most stable conformer (see below), which is denoted as **1e** and which is characterized by the equatorial position of the  $\text{CH}_3$  group, conformer **2e** can be obtained by turning the thiophene ring plane by some  $40^\circ$  with respect to the NCC plane (the sulfur atom lies more closely to the nitrogen atom) with the internal rotation of the  $-\text{C}_4\text{SH}_3$  fragment by  $180^\circ$ . Heterocycle inversion (with the turn of the thiophene moiety) produces conformer **4e**. Conformer **1a** is distinguished by the axial position of the  $\text{CH}_3$  group (and by some change in the rotation angle of the  $-\text{C}_4\text{SH}_3$  fragment). Functionality significantly distorts the geometry of the fullerene cage near its attachment place. The longest bond ( $1.605 \text{ \AA}$ ) is the C–C bond along which the heterocycle is attached; this value, which is noticeably greater than the length of an ordinary

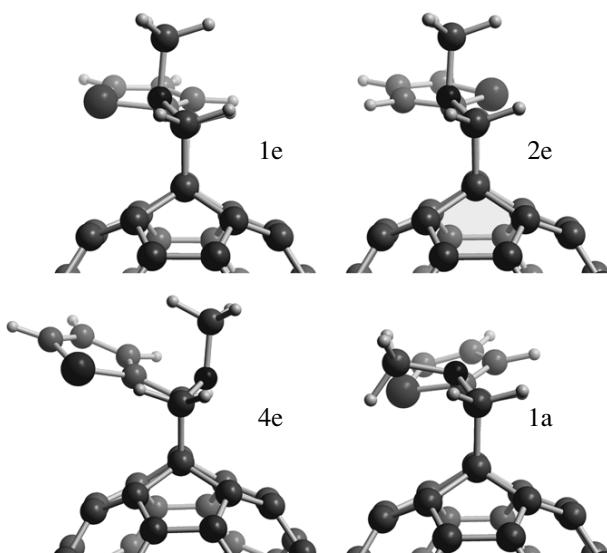
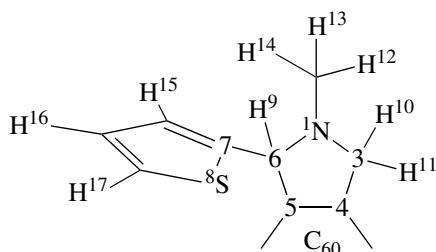



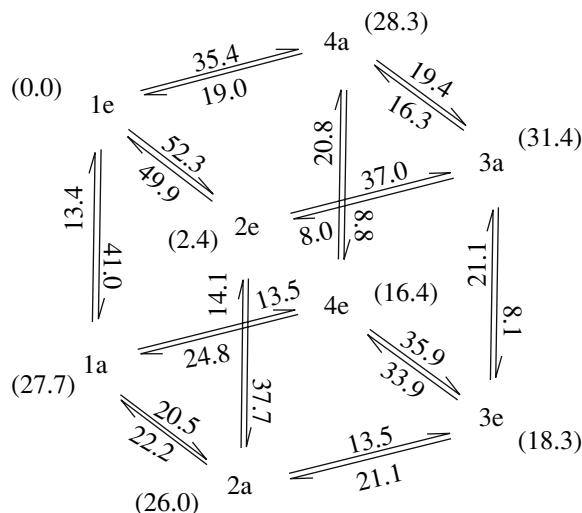

Fig. 2. Configurations of four TMFP conformers.

bond in the carbon cage, is indicative of significant strains near the functionality. Adjacent ordinary bonds of the cage become  $0.05$ – $0.1 \text{ \AA}$  longer; the other bonds of the fullerene cage remain practically unchanged. Table 1 displays some geometric parameters and the relative energies of the eight potentially possible TMFP conformers computed using the PBE/TZ2P method with the energy of the zero vibrational level taken into account. From Table 1 it follows that the conformers with the equatorial orientation of the methyl group have higher stability; of them, the conformers in which the thiophene substituent lies opposite to the lone pair of the nitrogen atom are less profitable. The two most stable conformers (**1e** and **2e**), as computed, have a small energy difference ( $2.4 \text{ kJ/mol}$  with account of the energy of the zero vibrational level); therefore, their

**Table 1.** Geometric parameters ( $E$ , deg) and relative energies (kJ/mol) for eight conformers of a TMFP molecules from PBE/TZ2P computations

| Parameter                                              | 1e     | 2e     | 3e    | 4e    | 1a    | 2a    | 3a    | 4a    |
|--------------------------------------------------------|--------|--------|-------|-------|-------|-------|-------|-------|
| $E(\text{PBE/TZ2P})$                                   | 0.0    | 2.4    | 18.3  | 16.4  | 27.7  | 26.0  | 31.4  | 28.3  |
| $\text{C}^2\text{--N}^1$                               | 1.462  | 1.462  | 1.457 | 1.457 | 1.466 | 1.466 | 1.467 | 1.467 |
| $\text{C}^3\text{--N}^1$                               | 1.455  | 1.455  | 1.451 | 1.451 | 1.447 | 1.446 | 1.448 | 1.450 |
| $\text{C}^6\text{--N}^1$                               | 1.465  | 1.465  | 1.469 | 1.464 | 1.461 | 1.461 | 1.458 | 1.459 |
| $\text{C}^3\text{--C}^4$                               | 1.557  | 1.556  | 1.558 | 1.558 | 1.599 | 1.600 | 1.585 | 1.587 |
| $\text{C}^4\text{--C}^5$                               | 1.605  | 1.605  | 1.608 | 1.607 | 1.596 | 1.596 | 1.598 | 1.596 |
| $\text{C}^5\text{--C}^6$                               | 1.590  | 1.590  | 1.589 | 1.589 | 1.632 | 1.632 | 1.636 | 1.632 |
| $\text{C}^6\text{--C}^7$                               | 1.495  | 1.499  | 1.515 | 1.514 | 1.496 | 1.497 | 1.512 | 1.507 |
| $\chi(\text{N}^1, \text{C}^3, \text{C}^4, \text{C}^5)$ | 26.1   | 26.8   | -27.2 | -27.4 | 22.2  | 22.1  | -24.8 | -23.5 |
| $\chi(\text{N}^1, \text{C}^6, \text{C}^5, \text{C}^4)$ | -28.4  | -28.3  | 24.3  | 24.3  | -26.5 | -26.7 | 15.6  | 16.2  |
| $\chi(\text{N}^1, \text{C}^6, \text{C}^7, \text{S}^8)$ | -39.8  | 141.3  | 115.2 | -54.7 | -67.7 | 110.5 | 160.0 | -36.6 |
| $\chi(\text{C}^2, \text{N}^1, \text{C}^3, \text{C}^4)$ | -170.1 | -170.9 | 177.7 | 178.7 | 91.6  | 91.6  | -93.6 | -94.5 |




**Fig. 3.** Atom numbering used in the work.

coexistence is expected: the equilibrium composition calculated for 298 K is a mix of conformers **1e** and **2e** in the 74 : 26 proportion with infinitesimal concentrations of the other conformers.

In order to estimate the energy of possible conformational transformations in a TMFP molecule, we built one-dimensional sections of the potential energy surface for the internal coordinates that correspond to the conformational transitions: the dihedral angle  $\text{SCCN}$  for the rotation of the thiophene substituent, a linear combination of the dihedral angles ( $\text{C}^2, \text{N}^1, \text{C}^3, \text{C}^4$ ) and ( $\text{C}^2, \text{N}^1, \text{C}^6, \text{C}^5$ ) for describing the movement of the methyl group, and the combination of these angles with the angles ( $\text{N}^1, \text{C}^3, \text{C}^4\text{C}^5$ ) and ( $\text{N}^1, \text{C}^3, \text{C}^5\text{C}^4$ ) for the heterocycle inversion. The atomic numbering used in this work is shown in Fig. 3. Next, we optimized the geometry of transition states; this enabled us to estimate the transition barrier heights. The routes and energies of possible transitions are displayed in Fig. 4. It follows from Fig. 4 that the transformation barriers, counted starting from the pertaining minima, for all types of movement lie in an approximate range from 20 to 50 kJ/mol (cf. 20.8–41.1 kJ/mol for equatorial  $\longleftrightarrow$  axial transitions, 19.4–52.3 kJ/mol for the internal rotation of the

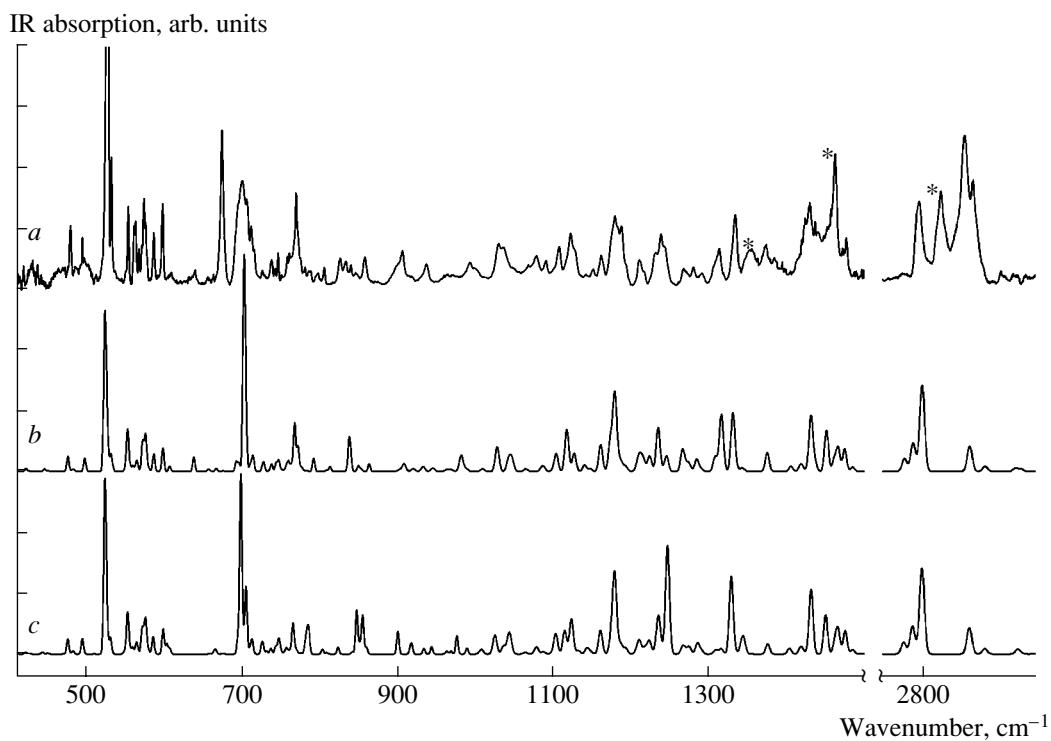
**Table 2.** Experimental and calculated chemical shifts for proton signals from TMFP

| Proton                 | Chemical shift, ppm |      |      |      | observed |  |
|------------------------|---------------------|------|------|------|----------|--|
|                        | calculated          |      |      |      |          |  |
|                        | 1e                  | 2e   | 3e   | 4e   |          |  |
| 9                      | 5.31                | 5.13 | 6.07 | 6.35 | 5.32     |  |
| 10                     | 4.71                | 4.69 | 4.41 | 4.44 | 5.00     |  |
| 11                     | 4.18                | 4.16 | 5.07 | 5.29 | 4.30     |  |
| 12                     | 2.98                | 2.90 | 2.53 | 2.48 |          |  |
| 13                     | 2.73                | 2.69 | 2.57 | 2.63 |          |  |
| 14                     | 1.75                | 1.76 | 2.01 | 2.25 |          |  |
| CH <sub>3</sub> (avg.) | 2.49                | 2.45 | 2.37 | 2.45 | 2.91     |  |
| 15                     | 7.00                | 7.35 | 7.57 | 6.97 | 7.02     |  |
| 16                     | 6.60                | 6.76 | 6.95 | 6.71 | 7.04     |  |
| 17                     | 7.05                | 6.82 | 6.90 | 7.16 | 7.39     |  |



**Fig. 4.** Transition routes and barriers between TMFP conformers (kJ/mol). In parentheses, the energies of conformers are indicated.

thiophene radical, and 21.1–36.9 kJ/mol for the inversion of the pyrrolidine cycle). The highest value is for the transition between the two most stable conformers, likely because of the steric hindrances to the rotation of the thiophene substituent around the C<sub>6</sub>–C<sub>7</sub> line; these hindrances appear due to the small distance to the fullerene cage.


### *<sup>1</sup>H NMR Spectra of TMFP*

The number of signals recorded in the  $^1\text{H}$  NMR spectra of TMFP matches the number expected for one conformer; this can be due to either the existence of a single species in solution or the averaging of signals from several conformers as a result of rapid transitions between them; see, e.g., [10]: in the  $^{19}\text{F}$  NMR spectra of the compound  $\text{C}_{60}\text{FCF}_3$  recorded at room temperature, there was a single average signal from the fluorine atoms of the  $\text{CF}_3$  group with the barrier to its internal rotation of some 50 kJ/mol.

More data about the conformational composition of the compound can be gained from the comparison of the observed chemical shifts for proton signals with the values calculated using the GIAO-PBE/TZ2P procedure for the four most stable conformers (Table 2). An analysis of the data compiled in Table 2 brings us to the conclusion that the values calculated for conformer **1e** best of all agree with the experiment.

### IR Spectra for TMFP

The measured IR spectrum of TMFP is displayed in Fig. 5. As a result of the lack of symmetry and the large number of atoms in the molecule, the spectrum is very complex; this is virtually a continuum spectrum in the



**Fig. 5.** (a) Measured and (b, c) simulated IR spectra for TMFP conformers: (b) **1e** and (c) **2e**. Asterisks mark lines associated with impurity solvents.

region 400–1650 cm<sup>−1</sup>, accompanied by several bands in the region of the CH stretching vibrations.

Assignment was carried out on the basis of the quantum-mechanical computations of force fields and the line intensities. Previously [11], we showed that using the PBE generalized gradient functional [7] in combination with the three-exponent basis set supplemented with two sets of *d*-type polarization functions, one can reach a satisfactory fit of the vibrational spectra of cage carbon structures without force field scaling; the mean-square deviation of the calculated frequencies from the measured values was 6 cm<sup>−1</sup>. However, force field scal-

ing can appear necessary for this method to adequately fit the force fields of the moieties attached to the fullerene cage. In order to obtain necessary scaling factors, we carried out provisional computations of vibrational spectra for thiophene and *N*-methylpyrrolidine model molecules. For the thiophene molecule, we borrowed the spectrum assignment from work [12]; as a result of solving the inverse problem by means of the Pulay technique [13], we obtained the scaling factors in the narrow range from 0.9670 to 1.0949. For the *N*-methylpyrrolidine molecule, in contrast, the literature assignment [14] leads to inadequate overestimates of

**Table 3.** Scaling factors for the force fields of an *N*-methylpyrrolidine molecule

| Coordinate                                 | Scaling factor                                 |                     |          |                                                |             |          |
|--------------------------------------------|------------------------------------------------|---------------------|----------|------------------------------------------------|-------------|----------|
|                                            | spectrum assignment [14]                       |                     |          | this work                                      |             |          |
|                                            | B3LYP/<br>6-311G <sup>**</sup> ( <i>d, p</i> ) | MP2/cc-pVTZ         | PBE/TZ2P | B3LYP/<br>6-311G <sup>**</sup> ( <i>d, p</i> ) | MP2/cc-pVTZ | PBE/TZ2P |
| QCC                                        | 1.3570                                         | 1.2845              | 1.3743   | 1.0658                                         | 1.0179      | 1.0801   |
| QCN                                        | 1.2496                                         | 1.2354              | 1.3314   | 0.9741                                         | 0.9759      | 1.0432   |
| γHCC                                       | 0.8780                                         | 0.8567              | 0.8709   | 0.9632                                         | 0.9345      | 0.9058   |
| γHCN                                       | 0.8655                                         | 0.8497              | 1.1021   | 0.9074                                         | 0.8781      | 1.0756   |
| γCNC                                       | 0.7654                                         | 0.7030 <sub>3</sub> | 0.8144   | 1.0475                                         | 0.9431      | 1.0903   |
| γNCC                                       | 0.4441                                         | 0.5014              | 0.9405   | 1.0263                                         | 1.0646      | 1.0231   |
| <i>rms<sub>ov</sub></i> , cm <sup>−1</sup> | 18.2                                           | 23.0                | 17.5     | 15.8                                           | 24.5        | 14.2     |

**Table 4.** Calculated and observed vibrational frequencies and assignment of IR spectra for TMFP

| TMFP                                |                                       | C <sub>60</sub>     |                                           | Addend              |                             |                        |
|-------------------------------------|---------------------------------------|---------------------|-------------------------------------------|---------------------|-----------------------------|------------------------|
| v <sub>obs</sub> , cm <sup>-1</sup> | v <sub>calcd</sub> , cm <sup>-1</sup> | v, cm <sup>-1</sup> | assignment                                | v, cm <sup>-1</sup> | assignment (NMP)            | assignment (thiophene) |
| 3067                                | 3074                                  |                     |                                           | 3086                |                             | vCH                    |
| 2976                                | 2982                                  |                     |                                           | 2958                | vCH                         |                        |
| 2920                                | 2935                                  |                     |                                           | 2877                | vCH                         |                        |
| 2782                                | 2764                                  |                     |                                           | 2771                | vCH                         |                        |
| 2738                                | 2738                                  |                     |                                           | 2754                | vCH                         |                        |
| 1558                                | 1563                                  | 1567                | H <sub>g</sub> (8)                        |                     |                             |                        |
| 1538                                | 1531                                  |                     |                                           | 1504                |                             | vCC + δHCC             |
| 1518, 1507, 1489                    | 1518, 1508, 1485                      | 1525<br>1499        | F <sub>2u</sub> (5)<br>G <sub>g</sub> (6) |                     |                             |                        |
| 1471                                | 1461                                  |                     |                                           | 1458                | δHCH                        |                        |
| 1462                                | 1451                                  |                     |                                           | 1448                | δHCH                        |                        |
| 1439                                | 1436                                  |                     |                                           | 1409                |                             | vCC + δHCC             |
| 1436, 1429, 1424,<br>1419, 1412     | 1431, 1429, 1419,<br>1405             | 1429,               | F <sub>1u</sub> (4)                       | 1418                | δHCH + δHCN                 |                        |
|                                     |                                       | 1425,               | H <sub>g</sub> (7)                        |                     |                             |                        |
|                                     |                                       | 1418                | G <sub>u</sub> (6)                        |                     |                             |                        |
| 1334                                | 1335                                  | 1342                | H <sub>u</sub> (6)                        |                     |                             |                        |
| 1305                                | 1308                                  | 1311                | G <sub>g</sub> (5)                        |                     |                             |                        |
| 1280, 1267, 1231                    | 1275, 1266, 1222                      | 1270                | F <sub>1g</sub> (3)                       |                     |                             |                        |
|                                     |                                       | 1252                | H <sub>g</sub> (6)                        |                     |                             |                        |
| 1244                                | 1245                                  |                     |                                           | 1256                |                             | δHCC                   |
| 1231, 1210                          | 1222, 1211                            | 1214                | H <sub>u</sub> (5)                        |                     |                             |                        |
| 1217                                | 1215                                  |                     |                                           | 1150                | δHCC + δHCN + vCN           |                        |
| 1194, 1182, 1179,<br>1162, 1151     | 1193, 1177, 1173,<br>1161, 1148       | 1182                | F <sub>1u</sub> (3)                       |                     |                             |                        |
|                                     |                                       | 1168                | F <sub>2u</sub> (4)                       |                     |                             |                        |
| 1188                                | 1179                                  |                     |                                           | 1150                | vCN + δHCC + δHCN           |                        |
| 1128                                | 1127                                  |                     |                                           | 1115                | δHCC + δHCN                 |                        |
| 1122, 1108, 1079,<br>1068           | 1117, 1104, 1084,<br>1065             | 1099                | H <sub>g</sub> (5)                        |                     |                             |                        |
|                                     |                                       | 1079                | G <sub>g</sub> (4)                        |                     |                             |                        |
| 1090                                | 1085                                  |                     |                                           | 1085                |                             | δHCC + vCC             |
| 1029                                | 1028                                  |                     |                                           | 1039                | δHCN + vCC + vCN            |                        |
| 1001, 918, 905                      | 988, 920, 908                         | 973                 | A <sub>u</sub>                            |                     |                             |                        |
|                                     |                                       | 962                 | G <sub>u</sub> (4)                        |                     |                             |                        |
| 993, 936                            | 982, 933                              | 956                 | F <sub>2u</sub> (3)                       | 965                 | vCC + δCCC + δNCC<br>+ δHCN |                        |
| 918                                 | 920                                   |                     |                                           | 943                 | vCC                         |                        |
| 905, 898                            | 908, 902                              |                     |                                           | 898                 |                             | ρCH                    |
| 858                                 | 863                                   |                     |                                           | 872                 |                             | vCS + δCCC + δSCC      |
| 846, 839, 833, 826                  | 853, 849, 839, 837                    | 827                 | F <sub>1g</sub> (2)                       | 839                 |                             | vCS                    |
|                                     |                                       |                     |                                           | 867                 |                             | ρCH                    |

Table 4. (Contd.)

| TMFP                                |                                       | C <sub>60</sub>     |                                           | Addend              |                            |                        |
|-------------------------------------|---------------------------------------|---------------------|-------------------------------------------|---------------------|----------------------------|------------------------|
| v <sub>obs</sub> , cm <sup>-1</sup> | v <sub>calcd</sub> , cm <sup>-1</sup> | v, cm <sup>-1</sup> | assignment                                | v, cm <sup>-1</sup> | assignment (NMP)           | assignment (thiophene) |
| 805, 798, 793                       | 813, 810, 808                         | 796                 | F <sub>2g</sub> (3)                       |                     |                            |                        |
| 788, 785, 780, 775                  | 792, 776, 772, 771                    | 775                 | G <sub>u</sub> (3)                        |                     |                            |                        |
|                                     |                                       |                     | H <sub>g</sub> (4)                        |                     |                            |                        |
| 769, 761, 758,<br>751, 746          | 767, 763, 759,<br>751, 747            | 757                 | F <sub>2g</sub> (2)                       | 751                 |                            | vCS + δCCC + δSCC      |
|                                     |                                       | 757                 | G <sub>g</sub> (3)                        |                     |                            |                        |
|                                     |                                       | 753                 | G <sub>u</sub> (2)                        |                     |                            |                        |
| 746, 737, 726                       | 747, 738, 728                         | 739                 | H <sub>u</sub> (4)                        |                     |                            |                        |
| 742                                 | 744                                   |                     |                                           | 787                 | δHCC + δHCN                |                        |
| 715, 711, 706, 700                  | 714, 711, 706, 702                    | 712                 | F <sub>2u</sub> (2)<br>H <sub>g</sub> (3) | 715                 |                            | ρCH                    |
| 694                                 | 692                                   |                     |                                           | 683                 |                            | ρCH                    |
| 694, 656                            | 692, 657                              | 668                 | H <sub>u</sub> (3)                        |                     |                            |                        |
| 640                                 | 638                                   |                     |                                           | 608                 |                            | δCCC + δSCC + vCS      |
| 609                                 | 607                                   |                     |                                           | 572                 | δCCC + δNCC + vCC<br>+ vCN |                        |
| 598                                 | 598                                   |                     |                                           | 615                 | δCCC + δNCC<br>+ δCNC      |                        |
| 576, 571, 567, 553                  | 576, 572, 564, 553                    | 575                 | F <sub>1u</sub> (2)<br>G <sub>g</sub> (2) |                     |                            |                        |
| 586, 536                            | 586, 533                              |                     |                                           | 565                 |                            | τCCCC + τSCCC          |
| 561, 550                            | 555, 550                              | 553                 | F <sub>2g</sub> (1)                       |                     |                            |                        |
| 553, 536                            | 553, 533                              | 533                 | H <sub>u</sub> (2)                        |                     |                            |                        |
| 532, 526                            | 524, 523                              | 526                 | F <sub>1u</sub> (1)                       |                     |                            |                        |
| 495                                 | 498                                   |                     |                                           | 452                 |                            | τCCCC + τSCCC          |
| 488, 485, 479                       | 484, 482, 476                         | 496<br>485          | A <sub>g</sub> (1)<br>G <sub>g</sub> (1)  |                     |                            |                        |

scaling factors for the coordinates of C–C and C–N bonds. Therefore, we carried out additional computations of the molecular force field at the B3LYP/6-311G(d,p), MP2/cc-pVTZ, and PBE/TZ2P levels and proposed another assignment of the spectra. The scaling factors computed in terms of the specified approaches using the literature or our assignment of the spectra are listed in Table 3.

The factors listed in the last column of Table 3 (together with the respective factors for the thiophene moiety) were then used for scaling the quantum-mechanical force fields computed for the two most stable TMFP conformers. The results of the computation are compared to the experimental data in Fig. 5. The spectra simulated for conformers **1e** and **2e** are very similar; some distinctions are only observed in the regions of 830–870 and 1200–1350 cm<sup>-1</sup>. The mea-

sured spectrum is slightly better fitted by the spectrum simulated for conformer **1e**; thus, we can infer that this conformer dominates in crystals of the compound.

The assignment of the bands observed in the spectrum (Table 4, first column) was carried out by means of normal-coordinate analysis; for clarity, the assignment was also carried out in terms of the normal vibrations of the starting fullerene, thiophene, and *N*-methylpyrrolidine molecules; their vibration frequencies are also listed in the table. The full set of the calculated vibration frequencies for TMFP and the results of the normal-coordinate analysis are available from the authors.

In the region 400–800 cm<sup>-1</sup>, the strong lines are due to fullerene vibrations (Table 4). The components of the F<sub>1u</sub>(1) mode of the starting fullerene are mixed with components of the H<sub>u</sub>(2) mode; they are observed as

very strong bands within a narrow range of 526–532  $\text{cm}^{-1}$ . The group of medium-intensity peaks at 553–598  $\text{cm}^{-1}$  is assigned to the derivative vibrations  $F_{1u}(2)$  mixed with  $F_{1g}(1)$  and  $G_g(2)$  modes. The components of the five-fold degenerate modes  $H_g(3)$ ,  $H_u(4)$ , and  $H_g(4)$  with small contributions of threefold and fourfold degenerate modes appear in the spectrum with moderate or low intensities at 694–715, 726–746, and 758–788  $\text{cm}^{-1}$ , respectively. The very strong band at 700  $\text{cm}^{-1}$  is due to the out-of-plane vibration of hydrogen atoms in the thiophene moiety; the C–S stretching vibration is observed at 858  $\text{cm}^{-1}$  and has a medium intensity (Table 4). In the starting compound, these vibrations are observed at 722 and 872  $\text{cm}^{-1}$ , respectively [12].

The vibrations of the fullerene cage appear in the range 800–1100  $\text{cm}^{-1}$ , frequently mixed with the stretching vibrations of the pyrrolidine moiety. The strongest bands in the range 1100–1600  $\text{cm}^{-1}$  are due to the C–C and C–N stretching vibrations and the HCC and HCN bending vibrations in the addends (Table 4). The  $F_{1u}(3)$  and  $F_{1u}(4)$  modes of fullerene appear as medium-intensity and high-intensity bands at 1143–1194 and 1424–1436  $\text{cm}^{-1}$ , respectively. The other vibrations of the carbon cage are virtually unobserved in this spectral range, except for several medium-intensity lines at 1210–1238  $\text{cm}^{-1}$  (the  $H_u(5)$  and  $H_g(6)$  modes of fullerene) and 1473  $\text{cm}^{-1}$  (the  $A_g(2)$  mode).

In the range of the CH stretching vibrations, five strong lines appear due to the vibrations of the methylpyrrolidine moiety; the frequencies below 2800  $\text{cm}^{-1}$  are due to the vibrations involving so-called Bohlmann hydrogen atoms that lie opposite to the lone pair of the nitrogen atom [14, 15].

## CONCLUSIONS

The conformational composition of 2-thienyl-*N*-methylfulleropyrrolidine has been studied using experimental and computations methods. From the results of quantum-mechanical computations, the compound can exist as a mix of eight conformers with the energy differences between the conformers ranging from 2.4 to 31.4 kJ/mol and transition barriers between them ranging from 19.4 to 52.3 kJ/mol. The  $^1\text{H}$  NMR spectrum of the compound in solution can correspond to either one conformer or an equilibrium mix of the two most stable species. The IR spectrum of the solid compound can be assigned in terms of the presence of one (the most stable) conformer with the methyl group in the equatorial

position and the rotation angle of the thiophene moiety relative to the NCC angle equal to 39.8°. The full assignment of the spectrum has been carried out in terms of normal modes of the constituents of the diad (fullerene, thiophene, and *N*-methylpyrrolidine moieties).

## ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research (project nos. 05-03-32135 and 05-7-98001).

## REFERENCES

1. Yurovskaya, M.A. and Trushkov, I.V., *Russ. Chem. Bull.*, 2002, vol. 51, p. 367.
2. Imahori, H., *Org. Biomol. Chem.*, 2004, vol. 2, p. 1425.
3. Guldi, D.M. and Prato, M., *Acc. Chem. Res.*, 2000, vol. 33, p. 695.
4. Imahori, H., Kimura, M., Hosomizu, K., Sato, T., Ahn, T.K., Kim, S.K., Kim, D., Nishimura, Y., Yamazaki, I., Araki, Y., Ito, O., and Fukuzumi, S., *Chem. Eur. J.*, 2004, vol. 10, p. 5111.
5. Maggini, M., Scorrano, G., and Prato, M., *J. Am. Chem. Soc.*, 1993, vol. 115, p. 9798.
6. Laikov, D.N. and Ustynyuk, Yu.A., *Izv. Akad. Nauk, Ser. Khim.*, 2005, vol. 3, p. 804.
7. Perdew, J.P., Burke, K., and Ernzerhof, M., *Phys. Rev. Lett.*, 1996, vol. 77, p. 3865.
8. Granovsky, A.A. *PC GAMESS* (<http://classic.chem.msu.su/gran/gamess/index.html>).
9. Kochikov, I.V., Kuramshina, G.M., Pentin, Yu.A., and Yagola, A.G., *Obratnye zadachi kolebatel'noi spektroskopii* (Inverse Problems of Vibrational Spectroscopy), Moscow, 1993.
10. Kareev, I.E., Quicones, G.S., Kuvychko, I.V., Khavrel, P.A., Ioffe, I.N., Goldt, I.V., Lebedkin, S.F., Seppelt, K., Strauss, S.H., and Boltalina, O.V., *J. Am. Chem. Soc.*, 2005, vol. 127, p. 11497.
11. Popov, A.A., *Candidate (Chem.) Dissertation*, Moscow, 2003.
12. Kochikov, I.V., Tarasov, Y.I., Spiridonov, V.P., Kuramshina, G.M., Rankin, D.W.H., Saakjan, A.S., and Yagola, A.G., *J. Mol. Struct.*, 2001, vols. 567–568, p. 29.
13. Pulay, P., in *Modern Theoretical Chemistry*, Schaefer, H.F.N., Ed., New York: Plenum, 1977, vol. 4, p. 153.
14. Billes, F. and Geidel, E., *Spec. Acta, Part A: Mol. Biomol. Spectrosc.*, 1997, vol. 53, p. 2537.
15. Bohlmann, F., *Ang. Chem.*, 1957, vol. 69, p. 641.